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NOTE

Computation of the ldeal-MHD Continuous Spectrum
in Axisymmetric Plasmas

1. INTRODUCTION

Many phenomena in laboratory plasmas, solar and
stellar plasmas, and the earth’s magnetosphere are
dominated by a magnetic field and are described by the
cquations of magnetohydrodynamics (MHD for short).
Spectral analysis by means of the normai-mode approach is
often indispensable to obtain a deeper insight in such
phenomena. In linear ideal (dissipationless) MHD, the
spectrum of oscillation frequencies of an inhomogeneous
plasma consists of a continuous spectrum in addition to the
discrete spectrum. The continuum modes are characterized
by spatial non-square integrable singularities and a non-
exponential growth or decay in time. The importance of the
continuous spectrum is beyond dispute: it is essential for the
determination of the temporal behaviour of the plasma and
for the understanding of the structure of the spectrum since
it serves as the only location of possible accumulation
points. Alse, the knowledge of the internal structure of the
continuous spectrum, and hence the location of the
singularities, is a clear—and in practice often indis-
pensable-—advantage for accurately solving the MHD
equations. In addition, the resonant absorption of Alfvén
continuunt waves is a promising scheme for plasma heating.
Hence, the ideal continuous spectrum has begn studied by
many authors (see, e.g., [1-61 and references therein).

The ideal MHD equations that govern the linear
perturbations around a magnetostatic equilibrium can be
written in the form

Lo V(o) (12)
poa—:lz —Vp, +(VxBy)x (VxA,)
+{(VxVxA})xB,, (1b)
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where p is the plasma density, T is the temperature, B is the
magnetic field, and v is the velocity field. The subscript 1
denotes an Fulerian perturbation and the subscript 0
indicates an equilibrium gquantity. The equilibrium is
assumed to be given in flux coordinates (i, 8, ¢) with 4 the
coordinate that labels the magnetic surfaces. The perturbed
magnetic field is represented by a vector potential A ;. The
ratio of specific heats, y, is taken to be §. Equations
(1a)-(1d) form a system of eight partial differential equa-
tions for eight unknowns, viz. p,, ¥y, 010, Uyg, T, Asy, A1es
and A,,. With the assumption of a time dependence of
the form e* and appropriate boundary conditions the
system (1) determines a complex eigenvalue problem of
the form

R u=4iS u, {2)
with u a state vector that contains the perturbed quantities
and 4 the (complex ) eigenvalue. The ideal-MHD operator is
represented by matrices R and 8, where S is a diagonal
matrix and R contains differential operators and equi-
librinm quantities.

When the equilibrium quantities vary only in one spatial
direction and are constant on magnetic surfaces, the
perturbed quantities can be Fourier analyzed in the two
ignorable spatial coordinates and each Fourier component
can be studied separately since there is no interaction
between different mode numbers. The continuous parts of
the spectrum can then be determined in an algebraic
manner as they correspond to the singularities of the
coefficients of a second-order ordinary differential equation
(the Hain-Liist equation). The Alfvén continuum, for
instance, is given by the dispersion relatton o, () =k(f) -
Bo(¢)// itoo(y), with k the wave vector. In equilibria with
inhomogeneity in two directions, however, the equilibrium
quantities also vary on magnetic surfaces and this loss of
symmetry makes the determination of the continuous
spectrum considerably more complicated. The continuous
spectrum of static, axisymmetric, and toroidal plasmas
has been derived independently by Goedbioed and Pao
[1, 27]. These authors showed that in a two-dimensional
plasma the continuous spectrum is determined by a reduced
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{one-dimensional non-singular) eigenvalue problem for a
fourth-order system of erdinary differential equations on
each flux surface. These reduced equations are obtained
upon limiting the analysis to the neighbourhood of a
particular flux surface y =y, and neglecting smalier terms.
The coefficients of this reduced eigenvalue problem are ali
non-singular and, consequently, this eigenvalue problem
yields a discrete set of eigenvalues on each flux surface.
However, each eigenvalue o this discrete set spreads out a
continuous spectrum when the magnetic surface is varied. [t
can be shown [1, 2] that a solution of the non-singular
eigenvalue problem on =y, corresponds to an improper
sotlution of the original problem (2) with the same eigen-
value and with v, @19, and a,4 (and, hence, B,,) divefging
logarithmically as ¢ — ¢, while the other components of
the state vector diverge as (¢ — o)~ "

The numerical method presented in the next section is
essentially a convenient way to obtain the equations of the
reduced eigenvalue problem that determines the continuous
spectrum from the set of full ideal MHD equations (1) by
using the results of Pac and Goedbloed and avoiding any
analytic manipulations of these equations. In Section 3, this
method is demonstrated upon computing the continuous
spectrum and its internal structure for a fusion-relevant
tokamak plasma,

2. NUMERICAL METHOD

The numerical method to compute the ideal-MHD con-
tinuous spectrum is now described by means of a concrete
example in order to demonstrate its simplicity and con-
venient implementation when starting from a given spectral
code. The normai-mode code CASTOR (complex Alfvén
spectrum for toroidal plasmas) [7, 8] is used as a starting
point, CASTOR solves the resistive-MHD eigenvalue
problem by means of the Galerkin procedure in combina-
tion with a finite-element discretization in the y-direction
{normal to the flux surfaces) and a Fourier expansion in the
poloidal coordinate. A combination of two cubic Hermite
finite elements {for v,,, a,4, and a,;) and two quadratic
finite elements (for vy, v 4, p,, and a4,,) is used to avoid
“spectral pollution” and to improve the accuracy. This leads
to a general matrix eigenvalue problem of the form

A-a=iB.a, (3)
with a the vector of the 16 x N, x N, expansion coefficients,
where N, is the number of radial mesh points and N, is the
number of poloidal fourier components (~e”?), The
problem now is that, in order to determine the continuous
part of the spectrum, N, has to be large because the
singularities have to be resolved properly. Hence, the
system (3) becomes very large and expensive to solve,
especially when strong mode coupling occurs and N, has
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to be large too. The required radial grid points can be sub-
stantially reduvced when the location of the singularities is
known, namely by mesh accumulation at these flux surfaces.
This, however, requires information on the internal
structure of the continuous spectrum, i.e., on the y-profiles
of the local Alfvén frequencies.

Given a solver for the general eigenvalue problem (3),
such as CASTOR for vanishing resistivity, the ideal con-
tinuous spectrum can easily be obtained by prescribing the
radial dependence which is known to be singular and
logarithmic in nature (see the previous section ). This is done
by focussing on one magnetic flux surface and replacing the
cubic finite elements by log{s) and the quadratic elements
by 1/e, with small & eg., 10~% This approximates the
logarithmic singularity of the radial velocity and magnetic
field components, and the (§ ~— ) ~*-type singularity of the
other dependent variables, and introduces an ordering of
the terms in the system {3) analoguous to the ordering
introduced by Pao and Goedbloed to obtain a reduced
gigenvalue problem on 3 =4, The resulting eigenvalue
problem is solved with the QR-algorithm for a finite num-
ber of ¢y’s. The result is shown in the next section, The
reduced eigenvaiue problem solved on each flux surface is
then determined by only 8 x N, equations and yields the
continuum frequencies and the (regular) dependence of the
continuum modes on the poloidal coordinate.

3, RESULTS AND DISCUSSION

Consider a toroidal, axisymmetric plasma with circular
cross section, a small pressure {f,~ 1%), an aspect ratio
of 2.5, and a safety factor raising from g,=1.05 on the
magnetic axis to g,=2.3 at the plasma surface. As for
CASTOR, the equilibrium is computed by means of the
equilibrium solver HELENA (9] in nen-corthogonal flux
coordinates (i, 8, ¢) with straight field lines. The density
profile is chosen as

polir) =1-095s (4)
with s=./w/¥ .. The yr-profiles of the continuous spectra
for the toroidal mode number = —3 and the poloidal
mode numbers m =2, 3, 4, 5, and 6 are displayed in Fig. la.
The reduced eigenvalue problem has been solved on 100
flux surfaces {100 equidistant s-values) which clearly suffices
to reveal the internal structure of the ideal continuous spec-
trum which is up—down symmetric. The g(y)-profile is also
indicated on Fig. la. The toroidicity of the equilibrium
induces poloidal mode coupling. The numbers on the
continuum branches indicate the dominant poloidal mode
number #m for that branch. The smooth curves near
Im{2)=0 belong to the slow magnetosonic continuum
which extends over a much smaller range because of the low
equilibrium pressure. The effect of the poloidal mode
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FIG. 1. ({(a) Structure of the ideal-MHI} continuous spectrum for

n= —-3 and m=2-6 and a density profile given by Eqg. (4). (b} Corre-
sponding ideal-MHD spectrum as obtained with CASTOR (N, =21,
N, =5). (c) Radial structure of the sy,,-component of the continuum
mode with Im(2) = —0.82, obtained with CASTOR (N, =251, N,,=5),
(d} Radial structure of the v,, -component of the continuum mode with
Im(2) = —0.82.

coupiing on the continuous Alfvén spectrum is particularly
strong on rational surfaces and neighbouring magnetic
surfaces. Modes (m, #) and (m', n), with different poloidal
mode numbers, couple strongly on the {rational) magnetic
surface, where g(y)= —(m+m')/2n. On such rational
surfaces the corresponding one-dimensional continuum
frequencies are degenerate. The strong peoloidal mode
coupling removes these degeneracies and produces gaps in
the continuous spectrum of toroidal equilibria. In Fig. la
such gaps occur, for instance: near s = (.47, where ¢ = 7 and
m=3 and 4 couple strongly; near s=0.67 (g=3%, m=3
and 5}); and near s =0.78 (g = 1.5, m=4 and 5).

The total ideal-MHD spectrum in the range —2<
Im(A)< +2, as obtained from CASTOR with 21 radial
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gridpoints and five Fourier components, is displayed in
Fig. 1b. Clearly, this picture contains much less information
on the continuous spectrum. Indeed, spectral codes
like CASTOR can only compute the projections of the
yt-profiles shown in Fig. 1a. Owing to the finite spatial
resolution, the continua show up as closely spaced discrete
eigenvalues, The gap 0.40 <Tm(4) £0.59 at s =0.47 shows
up here too (as indicated on the figure), but the other gaps
are hardly recognizable because of overlapping continuum
branches. Yet, CASTOR consumes a lot more CPU-time:
the continuous spectrum, as shown in Fig. 1a, is computed
in 12s on a Cray X-MP, while the CASTOR result shown
in Fig. 1b required about 50 times more CPU-time. The
reason, of course, is that CASTOR not only computes the
continuous part, but the complete ideal- MHD spectrum,
and has to resolve the singular ¢y-dependence to do so. This
singular radial (i) structure of the continuum modes can
be determined with CASTOR by an inverse vector iteration.
In Fig. lc and d, for instance, the radial dependence of the
continuum mode with Im(1)= —0.82 is displayed. The
v,,-component clearlv has four logarithmic singularities on
the four magnetic surfaces, where the local Alfvén frequency
equals --0.82, while the tangential velocity component
perpendicular to the magnetic field lines has (¥ — ) '-
singularities on these surfaces. As indicated, the location of
the singularities as well as the respective dominant Fourier
components are in perfect agreement with the result shown
in Fig. la: on s = 0.60 the m = 3-component is dominant; on
9=0.74 the m = 5-component is dominant; on s=0.80 the
nt =4-component is dominant; and on s =0.96 the m=6-
component is dominant. This kind of information is very
helpful and sometimes even indispensable, for instance, for
computing the damping of so-called gap-modes [7, 10, 11],
such as the one in the lower part of the [0.40, 0.59]-gap
indicated on Fig. 1b. These gap-modes, or toroidicity-
induced Alfvén eigenmodes, might be destabilized upon
interaction with zx-particles. However, when there are
continuum branches overlapping the gaps, like the m = 6-
branch in Fig. la, these modes are damped upon inter-
action with the corresponding continuum modes, which
might be sufficient to prevent the a-particle destabilization.
In order to compute the finite damping in the limit as the
plasma resistivity # vanishes, the nearly-singularities (for
1 # () have to be resolved and for this purpose, information
on the structure of the continuous spectrum is of invaluable
importance [7, 117.
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